· 

Criterios de divisiibilidad 2, 3, 6. Ejemplos

Criterios de divisibilidad

Aplicamos al número 246

Con este ejercicio, podremos responder, sin necesidad de hacer divisiones, a las pregunta:

El número 246...

¿Es divisible por 2?¿Es divisible por 3?¿Es divisible por 6?

¿Es múltiplo de 2?¿Es múltiplo de 3?¿Es múltiplo de  6?

¿Es 2 divisor de 246?

¿Es 3 divisor de 246?

¿Es 3 divisor de 246?

Aplicamos al número 361

Volvemos a preguntarnos...

El número 361...

¿Es divisible por 2?¿Es divisible por 3?¿Es divisible por 6?

¿Es múltiplo de 2?¿Es múltiplo de 3?¿Es múltiplo de  6?

¿Es 2 divisor de 361?

¿Es 3 divisor de 361?

¿Es 3 divisor de 361?

Probamos con las divisiones

Recordamos, un número es divisor de otro si está contenido en él un número exacto de veces; es decir, al realizar la división es exacta (el resto es cero).

Vamos a comprobar, que , como hemos concluido que el 361 no es divisible por 2, 3 ni 6, al realizar las divisiones estas son inexactas. (Resto distinto de cero).

¿Qué ocurre con el número 362?

Es divisible por 2, pero no lo es por 3. Por lo tanto, no es divisible por 6.

Puedes comprobarlo haciendo las divisiones.

362:2 = 181   R=0

362/3 = 120  R:2

362:6 = 60    R: 2